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Quantum Ising models in a transverse field are related to continuous-time 
percolation processes whose oriented percolation versions are contact processes. 
We study such models in .the presence of quasiperiodic disorder and prove 
localization in the ground state, no percolation, and extinction, respectively, for 
sufficiently large disorder. 

KEY WORDS: Quantum Ising model in quasiperiodic transverse field; 
percolation and contact processes in quasiperiodic environments; quasiperiodic 
disorder. 

1. I N T R O D U C T I O N  

Quantum Ising models in a transverse field are related by a Por tuin-  
Kasteleyn representation to continuous-time percolation processes whose 
oriented percolation version are contact processes. (t-3) These models have 
been studied in random environments(~-4); we refer to ref. 2 for references 
from the physics literature. In this article we examine their behavior in 
the presence of quasiperiodic disorder (see the review in ref. 19) and 
prove localization in the ground state, no percolation, and extinction, 
respectively, for sufficiently large disorder. 

We start by describing the models; we let J >  0 and b = {h(x), x ~ Z a} 
with each h(x) >~ O. 
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1.1. Q u a n t u m  Ising Mode l  in a Transverse  Field 

The quantum spin Hamiltonian is 

J H=--~ ~ ~3(x){y3(y)-~h(X)al(X) (1.1) 
( x , y )  x 

If A c Z a is finite, we define HA as the sum of terms in (1.1) indexed by 
sites and bonds within A. The finite-volume Hamiltonian has a unique 
ground state ~r~ a and we can define the finite-volume correlation function 

(~A, ~3(x) e h,-siHa ~3(y)OA) 
6~)((x, t), (y, s))= 

(~'-2A, 13 ] t - - S ] H A ~ A )  

for x , y ~ Z  a, t, sER (e.g., refs. 1 and 3). Since G~)( ., -) is monotonically 
increasing in A, we can define 

G(r ) ( . , . )=  lim G~)(- , . )  
A ~ Z  d 

We will also write G {I) t. ~ when we want to make explicit the dependence. h , d ~ ,  ~ " t 

We will use G(I)( ., .) as an indicator of the amount of order or 
disorder in the system. When for some x we have that G(I)((x, 0), (y, 0)) 
does not decay as lY[ ~ 0% we say that the system exhibits long-range 
order (LRO) in the ground state. However, for an inhomogeneous system 
it will not in general be true that LRO is characterized by a uniform bound 
from below, but only that 

lim sup Gm((x, 0), (y, 0)) > 0 

On the other hand, if for all x we have that G(~)((x, 0), (y, 0)) decay as 
]Y] ~ or, we will say that the system exhibits localization in the ground 
state. 

1.2. C o n t i n u o u s - T i m e  Perco la t ion  Process 

This percolation process is defined on Zdx  R as follows: Along each 
vertical line {x} • R d we put cuts at times given by a Poisson point process 
with intensity h(x), and between each pair of adjacent vertical lines {x} • R 
and {y} •  (i.e., ( x , y )  is a bond) we place bridges at times given by a 
Poisson point process with intensity J. All these Poisson processes are 
independent of each other. 

A configuration of the process is a realization of all these Poisson 
processes, i.e., a locally finite collection of cuts and bridges. We will denote 
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by Q=-Qh.J the percolation probability measure, i.e., the probability 
measure on the space of configurations. 

Given a configuration of the process, we consider the subset of Z d+ 
obtained by taking Zdx  R, removing all cuts and adding all bridges, and 
decompose it into connected components which we call clusters. We say 
that (x, t) ~ (y, s) if they belong to the same cluster. 

This inhomogeneous continuous-time percolation process appears 
implicitly in Campanino et aL (1~ and was studied by Aizenman et al. (3) and 
by Klein. (4) The homogeneous version was considered by Bezuidenhout 
and GrimmettJ 6) 

We will denote by C(x, t) the cluster to which (x, t) belongs; ]C(x, t)l 
will denote its measure on Zd• R, where Z d is equipped with the counting 
measure and R with Lebesgue measure. We say that we have percolation 
if Q([C(x, t)] = o o ) > 0  for some (x, t) (and hence for all). 

The connectivity function is defined by 

G((x, t), (y, s)) = Q((x, t) ~ (y, s)) 

As in Section 1.1, we can talk about long-range order (LRO) or decay in 
the inhomogeneous system. Notice that 

EQ(JC(x, t ) l )=  ~ fdsG((x ,  t), (y,s))  (1.2) 
y ~ Z  d ' 

where EQ denotes expectation with respect to the probability measure Q. 
It is well known that LRO implies percolation, and summable decay of the 
connectivity function [i.e., finiteness of the right-hand side of (1.2)] 
precludes percolation. 

1.3. Contact Process 

If we consider the oriented percolation process we obtain by keeping 
the cuts as above, but replacing the bridges by one-way bridges, i.e., each 
Poisson process of bridges between pairs of adjacent vertices lines {x} x R 
and {y} x R is replaced by two independent Poisson processes with the 
same intensity J, the first giving one-way bridges from {x} x R to {y} x R, 
and the second from {y} • R to {x} x R, and uncut segments can only be 
traversed in the direction of increasing time, we obtain the graphical 
representation of the inhomogeneous contact process. (6) 

In the contact process language, (x, t) ~ (y, s) means that (x, t) infects 
(y, s), i.e., there is a path from (x, t) to (y, s) made up of uncut segments 
of vertical lines, traversed in the direction of increasing time, and one-way 
bridges. Let 

D(x, t )=  {(y, s); (x, t) ~ (y, s)} 
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be the infected cluster of (x, t), and let D(x, t; s) = D(x, t) c~ (Z d x {s}). We 
say that we have survival of the infection if Q{D(x, t ; s ) r  for all 
s~> t} > 0 for some (and hence for all) (x, t), otherwise we have extinction. 

Clearly, survival of the contact process (with parameters h, J) can only 
happen if we have percolation (with parameters h, 2J). 

The contact process in a random environment has been studied by 
Liggett, ~7'8) Bramson et al., ~9) Andjel, ~1~ and Klein. ~4~ 

It follows from the Fortuin-Kasteleyn representation of classical Ising 
models (e.g., ref. 11) and the results in refs. 1 and 3 that 

G2h.j/2((x, t), (y, s)) ~< "ah, J '~t/'~'(I) [[ x ,  t), (y, s)) <~ Gh, s((x, t), (y, s)) 

We will thus study the continuous-time percolation model. 
We introduce quasiperiodic disorder by taking 

h(x) = f ( A x  + O) 

for all x ~ Z d, where 0 ~ T k, the k-dimensional torus, f :  T k ~ [0, ~ ), and A 
is a k x d real matrix such that x ~ T x, defined by TxO = Ax + O, gives an 
ergodic action of Z d on Tk: 

If f is bounded from above [e.g., if f E  C(Tk)], we always have LRO 
for large J by comparison with the homogeneous case. r If f is bounded 
away from zero [i.e., f(O)~> 6 > 0 for some 6], we always have exponential 
decay of G((x, t), (y, s)) for small J for the same reason. 

But if f can take arbitrarily small values, there will be (for a.e 0) 
infinitely many regions in which the system wants to be ordered, as in the 
phenomenon of Griffiths singularities, even for arbitrarily small J. This is 
the situation we study in this article. 

We will need some definitions; we always take t /> 0. 

D e f i n i t i o n .  We say that gEC(T  k) is of type t/ if g(O)>~O and 
g- l ({0})  is a finite set (01,..., OR} with 

lim inf e I~ - 0,k -, g(0 ) > 0 
O -~ Oi 

for i= l,..., R. 

Typical examples are nonnegative analytic funuctions, e.g., 

k 

g(O) = 1-[ [1 - cos 2n(r with ~ ~ R k 
j = l  

which are of type t /for  all t /> 0. 
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Definition. f: T k ~  [0, ~ )  is N-admissible if there exists g of type 
r/such that f(O)>~g(O) for all 0 ~ T ~. 

D e f i n i t i o n .  We say that a real k •  d matrix A is diophantine (or 
has typical diophantine properties) if there exists e > 0 and C > 0 such that 

C 
d(Ax + O, O) >~ ixla+ ~ (l.3) 

for all 0 E T  k, x ~ Z a \ { 0 } ,  where d( . , - )  denotes the distance in T k. By "A 
is e-diophantine" we mean that (1.3) holds for the specified e with some 
C =  CA,~>O. 

Our first theorem is: 

T heorem1 .1 .  Let d = l ,  2 ..... k = l ,  2,.... Let h ( x ) = f ( A x + O ) ,  
where A is E-diophantine and f is N-admissible, with 0 < 0 <  1/(d+e).  
Then for any m > 0  and any v, with ( d + e ) q < v < l ,  there exists 
J1 = Jl(d, k, e, CA,~, 0, m, v) > 0 such that, if 0 < J <  J1, we have that for 
almost every 0 ~ T k and all x E Z d, 

G((x, t), (y, s))<~ Cx, o e x p ( - m { I x - y l  + [log(1 + [t-s[)] l /v})  

for all y e Z d, t, s e R, with Cx.o < ~ .  In particular we have extinction of the 
contact process for almost every 0 if J is sufficiently small. 

If k = d = 1, the matrix A can be identified with a real number, say w, 
and in this case TxO = wx + O. The ergodicity condition is equivalent to 
requiring w to be irrational. The diophantine condition is the usual one for 
real numbers. 

There is an analogy between localization in the ground state of quan- 
tum spin systems with disorder and localization for disordered Schr6dinger 
operators (e.g., refs. 12 and 1). It is easier to prove localization for random 
Schr6dinger operators (e.g., ref. 13) than localization in the ground state of 
an Ising model with a random transverse fieldJ 1'4) But for quasiperiodic 
disorder, the proof of Theorem 1.1 is not only easier than the proof of 
localization for quasiperiodic Schr6dinger operators, (~4 16) but there is no 
difference between one or many frequencies. In fact, many frequencies make 
localization in the ground state of an Ising model with a quasiperiodic 
transverse field more likely. 

But the analogy can only be taken so far. It is known that for the one- 
dimensional almost-Mathieu operator H =  --JA + cos 2zt(wx + O) one gets 
very different behavior for diophantine w or Liouville w (e.g., ref. 17). For  
any irrational w the Lyapunov coefficient is always positive for J <  1/2, but 
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while we have localization for w diophant ine  (at least for J .~  1), if w is a 
Liouville n u m b e r  the spect rum is always singular cont inuous  for J <  1/2. 
But in our  case, it turns out that  for k = d = 1 we have localization in the 
g round  state of the Ising model  with a quasiperiodic transverse field for 
any i rrat ional  w, at least for q-admissible functions with q < 1/3. We do, 
however,  loose the faster than  po lynomia l  decay in the t ime direction of 
T h e o r e m  1.1, and the p roof  is much  harder.  

T h e o r e m  1.2 .  Let  d =  1, 0 < q < 1/3. Let  h ( x ) = f ( w x  + 0), where w 
is an arb i t ra ry  i r ra t ional  n u m b e r  and f is q-admissible. Then  for any m > 0 
there exists J2=J2(rn, 7, w ) > 0  such that,  if 0 < J <  J2, the conclusions of 
Theo rem 1.1 hold with v = 1. 

2. T H E  M U L T I S C A L E  A N A L Y S I S  

We will use the same scheme for the multiscale analysis as in refs. 5, 
1, and  4. Let  us consider the cont inuous- t ime percolat ion process on 
Z a x  R in an inhomogeneous  environment .  We let 

AL(x ) - -  { y ~  za ;  l y - x l o ~ < L }  

and 

BL(x, t) = AL(x) • [ t  - e 7"/L), t + e T~L3] 

where T: R + --* R + is an increasing function to be specified later. We also 
let 

OAL(x) = {y e AL(x); {y,  y ' )  c Z a for some y '  q~ AL(x)} 

O HBL(x, t) = A L(X ) X { t -- e TtL), t + e r(L) } 

OvBz.(X, t) = OAL(x) x [t  -- e rtL), t + e teL) ] 

aBL(x, t) = a , B L ( x ,  t) w avBL(x,  t) 

Def in i t ion .  Let m > 0, L > 1. A site x ~  Z a is called (m, L)-regular  
if 

GaL(x,o)((x, 0), Y) <~ e -mL 

for all Y e  ~3BL(x , 0). Otherwise  x is called (m, L)-singular.  

Due  to the t ransla t ional  invariance in the t direction, we might  have 
taken in this definition every box of the form BL(x, t) for any t as well. 
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D e f i n i t i o n .  A set A c Z d is called (m, L)-regular if every x e A is 
(m, L)-regular. Otherwise it is called (m, L)-singular. 

Let us fix p, with 0 < # < 1. 

D e f i n i t i o n .  A site x ~ Z  a is called L-resonant if h(x)< e -L'.  A set 
A c Z d is called L-resonant if there exists x e A which is L-resonant. 

D e f i n i t i o n .  A number  L > 0  will be called m-simple if for any 
x E Z e which is (m, L)-singular we must have that AL(x) is L-resonant. 

We will use two "standard" multiscale analysis statements (e,g., ref. 4), 
which we need to formulate in a slightly more general form. We will 
consider stationary disordered environments, i.e., {h(x), x EZ d} is a 
stationary stochastic process. In the case of quasiperiodic environments, we 
have T k with normalized Lebesgue measure as our underlying probability 
space. 

Theorem 2.1. Consider the continuous-time percolation process 
on Z a •  R in a stationary disordered environment. Let T(L)= e z" with 
0 < v < 1, take moo > 0, and set 

PL = P ( 0  is (moo, L)-regular } 

Suppose there exists an increasing sequence of scales Lk, with 

Zk+ 1 v - - <  eLk 
Lk 

such that 

d Lk+ 1( 1 -- PLk) < oO 
k = l  

Then for any m with 0 < m < moo we have, with probability one, that for 
every x ~ Z d, 

G((x, t), (y, s))<~ Cx(h, m ) e x p ( - m {  I x - Y l  + flog(1 + J t - s [ ) ]  1/v}) 

for a l l y ~ Z  d, t, s ~ R ,  with C x ( h , m ) < ~ .  

T h e o r e m  2.2. Consider the continuous-time percolation process on 
Z d x R  in an inhomogeneous environment. Let Lo<~L 1 <(l /2R)L2 and 

AL2(Y)\()i=I ALl(Xi) is suppose there exists xl ..... xR~AL2(Y) such that R 
(m, L0)-regular. Then 

GBL2(y,0)(y, Y) ~< exp(--rhL2) 
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for all Y~gvBL(y,  0) with 

(2 .1)  

The statement of Theorem 2.2 makes sense only if the right-hand side 
of (2.1) remains positive, which will be always true for large enough Lo for 
suitable choices of T(L). 

The estimation of GBL(y,o)(Y, Y) for Ye ~?HBc(Y, 0) is as always much 
more complicated. In some cases we will find the following theorem 
particularly useful. 

T h e o r e m  2.3. Consider the continuous-time percolation process on 
Z d x R is an inhomogeneous environment. Let Lo = L1, L2 = L~ with Y > 1, 
T(L) = e c~, 0 < # < v < 1. Suppose Lo is large enough and: 

(a) The event described in Theorem 2.2 occurs. 

(b) Ac2(Y) is L2-nonresonant. 

Then AL2(Y) is (rh, Lz)-regular with 

n ~ = m ( 1  L o R + I )  2 2 
- 1  

Theorems 2.1-2.3 can be proved by repeating the proofs of the 
analogous theorems in refs. 1, 4, and 5. They are the key technical steps in 
the multiscale analysis. 

3. P R O O F  OF T H E O R E M  1.1 

The following proposition contains the property of an t/-admissible 
function that is actually used in the proofs. 

P r o p o s i t i o n  3.1. Let f be an q-admissible function. Then there 
exist 01 ..... O R e T k such that, for any # > 0, if L is sufficiently large, we have 
that f(O) < e c~ implies d(O, Oi) < 2L -~/~ for some i =  1,..., R. 

We now restrict ourselves to a continuous-time percolation process 
in a quasiperiodic environment with h(x)=f (Ax+O) ,  A and f as in 
Theorem 1.1. We fix # such that ( d + e ) t / < # < l ,  and m > 0 .  We set 
p=#/tl, and notice that p > d + e .  We take 1 <7<p/(d+e) .  

I . e m m a  3.2, Suppose L > 0 is m-simple and sufficiently large. Then 
for any x e Z d there exist Yl ..... YR ~ A L~(X) such that AL,(x)\ U iR 1 AL(Yi) is 
(m, L)-regular. 
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ProoL Suppose x l , x 2 , . . . , x R + l e Z  a are (m, L)-singular. Since L is 
m-simple, that means that AL(xi) is L-resonant, i =  1,..., R + 1, and due to 
Proposition 3.1 there exist ff~eAL(x~) and jes  { 1,..., R}, i =  1 ..... R +  1, such 
that 

d( TX'O, Oj~) < 2L -p 

Thus there exist ~?k~, 2k2 such that 

d(T  :~k~ O, T'%0) < 4L p 

But according to (1.3), 

C d(TXklO, T~*20) > 
I X ~ - ~ l  ~+~ 

It follows that (~-/1/(d+ e) 
I ~ ,  - ~,21 > Lp/<d+ ~) > 2L~ + 2L 

if L is large enough, since ~(d+ 5)< p. Thus Ixk~- xk2[ > 2L ~, which proves 
the lemma. [ 

k e m m a  3.3. Let L be m-simple. Then L ~ is rh-simple with 

L~-1 Ll-V 

for all L sufficiently large. 

ProoL It follows from Theorem 2.3 and Lemma 3.2. | 

We can now prove Theorem 1.1. Let us pick an initial scale L~, 
sufficiently large so we can apply the previous lemmas, and let L i+1=  L~ 
for i = 1, 2 ..... Let ml > 0; we set 

2 R  2 2 
m i + l = m i  1 - L ~ _ ~ / "  L~-I  L] -v 

Given m~ > 0, we can find m~ > 0 such that m; > m~ for all i = 1, 2 ..... 
If we take J sufficiently small, we can guarantee that L~ is ml-simple. It 
follows from Lemma 3.3 that Le is m~-simple for any i =  1, 2,.... Thus 

4R 
P { 0 is (m ~, L~)-singular } ~< P { A L,(0) is LFresonant } ~< - -  

L f  

by Proposition 3.1. 
Theorem 1.1 now follows from Theorem 2.1. | 
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4. PROOF OF THEOREM 1.2 

For this proof we need to make certain changes in the multiscale 
scheme. To simplify the argument we will take R =  1, 0~ =0 ;  the proof 
extends to the general case with the obvious modifications. 

Let w = [k~, k2,... ] be the continuous-fraction expansion of w; we call 
p,/q~ = [kl, k2,..., k~] the nth approximant. We will denote Iq~w-p,[ = 
d(Tq"O,O) by A.. We are going to use the following properties of 
continuous-fractions expansion (see, e.g., ref. 18): 

1. We have 

A~>~ q@+~ ( 1 - q ~  "] ~___~1 (4.1) 
q~+2J 2q~+1 

2. For every 0 < / < q , + ~ ,  0 s T  ~, 

3. We have 

d(O, T'O) >~ A~ (4.2) 

q n  ) (~/2)n --1 (4.3) 

Let us pick an initial scale L~. We set our sequence of scales L~, 
i =  I, 2 ..... by the following inductive rule: Fix 

s > l ,  l < y < s ,  

Given i, find n(i) such that 

r < min ~--~--, st7 - 1), 

qn(i) ~ Li  < qn(i) + 1 

S _ _  1~ r If q,(o+~<qn~o put L~+I-Li,  otherwise put Li+~=L~q,(i). Using our 
condition on r, we get that if L~ is sufficiently large, then for each j such 
that q j + l >  qj there exists at least one i(j) such that 

qj < Li(j) < Li(j)+ 1 < Li(j)+ 2 < qj+ 1/2 

We also need to change our definition of T(L). If Li+ l = L~, we define 
as before T(Li+x)=exp(L~+l). If Li+I=L~q~(o, we put T(Li+I )=  
exp(Li+ lq,(0 ) for some 3, with 1 > 6 > 0, to be specified. 

Let 

jl(n)=max{j: Lj<q,} 



Ising Model in Quasiperiodic Transverse Field 329 

L e m m a  4.1. We can choose/~, v, s, 7, r in such a way that for any 
m > 0 there exists J0 such that, if J <  Jo, we have that Li is m-simple if 
i = j l ( n )  for some n. 

Lemma4.1 is a special case of Lemma4.3, which is proved in 
Section 5. 

Recall p = #/r/. We will always have p > max(y, r + 1). 

L e m m a  4.2. For a.e. 0 E T and all x~  Z d, there exists k(O, x ) <  oe 
such that for k>k(O,  x)  we have that Ack+~(x) is (Lk, m)-regular if L~ is 
m-simple. 

ProoL If Lk is m-simple, it follows from Proposition 3.1 that 

Pk = P{ALk+I(X) is (Lk, m)-singular } 

~< P{A Lk + 1+ 2Lk(x) is Lk-resonant } 

4 16L~+1 
~<2(Lk+l + 2Lk) 7r ~< L---~ 

The lemma now follows from the Borel-Cantelli lemma, since 
Z~=I (Lk+I/LP) < ~  as P > 7 ,  p > r + l .  II 

Lemmas 4.1 and 4.2 already give decay for G((x, t), (y, s)), but with 
no information on the rate of decay. Indeed, it follows that we have an 
increasing sequence of scales Lki such that for Lki < tY--xl < Lk,+, we have 

IG((x, t), (y, s))l ~ e  -~m/2~L~i 

for ki sufficiently large. 
To obtain the decay of Theorem 1.2 we need to control--in both 

deterministic and probabilistic ways--the growth of the sequence Lki. We 
will actually need the following more detailed version of the Lemma 4.1, 
whose proof we will postpone to the next section. 

k e m m a  4.3. Suppose 0 < q < 1/3, and let # and 6 be such that 

{ $2 (3r+ lr)S } 
p > m a x  7 s , - - ,  7(3r + l ), - -  

s - - r  s 

0 < 6 < m i n  2r ' rr/ ' 2 - - ~ '  

Then for any m > 0  there exists Jo such that for J < J o  the scale Li is 
m-simple in the following cases: 
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1. If i=j l (n  ) for some n. 

2. I f q , u _ ~ ) + l < q ~ u _ l /  and n( i -1)=n( i ) .  
3. If q,u-b+l  <q~(i-1), n ( i -  1)<n( i ) ,  and q-u)+1 < q~,u)' 

4. If i=jo(n ) -  1 or jo(n) for some n such that q,u)>q'~u)_l. 

5. If qn(i_~)+~>qS(i ~) and q~u)+~<q'~u). 

We will also need the following two lemmas. 

L e m m a  4.4. For  every x e Z and k > 1 the set of phases 

O x - 0 E T l :  there exists y E Z ,  Lk - resonan t ,  such tha t  }y - x t < q~(*) + 1~ 

has measure not exceeding 2In(k) 2. 

Proof. Let us consider the set 

{ '}  B~ = 0: for all y 6 Ix, x + q,(k)] we have d(TYO, O) > qn(k)n(k) 2 

We will prove that for OEB~, d(TYO, 0 ) >  1/q,(k)n(k) 2 for any x--q,(kl+l/ 
n(k)Z<~y<<.x+q,(k)+l/n(k) 2. Indeed, let l =  [(y-x)/q,(k)].  Then by (4.1) 
and (4.2) 

d(TYO, Ty-lq"(k)O)= IlAn(k)l <~ Ill 
2qn~k) + 1 

On the other hand, we have y-lq,,(k)~ [x, x + q,(k)]. Thus d(TY-tq"ck~O, O) 
> 1/q,,(~)n(k) 2. For l y - x [  <~q,,(k)+l/n(k) 2 we have Ill <~q,,(k)+l/q,,(k)n(k) 2 
and d(TYO, O) > 1/2q,,(k)n(k) 2 > 1/LPk. That proves the inclusion B xk c (Ox)k c. 
Evidently 

{ 1_ 2_E - P((B~) c) <~ ~ P O: d(TYO, O) < I 
y~ [x,x + qn(k)] qn(k) n(k )2 j "~ n(k)2 

I_emma 4.5. Let dk= q,(k)+~/n(k) 2 -2Lk .  Under the same condi- 
tions as in Lemma 4.1 we have that for a.e. 0 and every x ~  Z there exists 
ko(x, 0 ) <  ~ such that for k>ko(x,  0), we have that Ad~(x ) is (m, Lk)- 
regular. 

Proof. Suppose n(kl)= n(k2). Then using the notations of the proof 
of Lemma 4.4 we have by definition B~'=B k2. It follows that 

k c ' 

Let fc=min{kl:n(kl)=n(k)} .  Let y be an (m, Lk)-singular point. 
Then if k is sufficiently large we conclude that ALk(Y) contains at least 
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one (2m, L~_~)-singular point Yo. But it follows from Lemma4.1 that 
for J small enough the scale L~_ ~ is 2m-simple. Thus there exists an 
L~_ l-resonant point 

Yl 6ALk_I(Yo) 

For 0~B~ we have d(TzO, O)> 1/2q,(~ln(k) 2 for ] z - x t  ~< 
[q~(k) + 1 ]/n(k) 2. We have two cases: 

(i) Suppose L~=L~_Iq~(~_~).  Then we have Lk>qn(k)>q~(~ 1)and 
1/2q,(k~n(k) 2 > 1/LPk- 1 if p > s/(s -- r). 

_ - -  Y (ii) Now suppose L k -  L~_~. Then 

1 1 1 1 
2q,(k~n(k) 2"~ 2L~n(k) 2 2L~_ln(k)  2 > L~--~_I 

if p > y .  

We conclude that for O~Bkx we have d(x, y t )>q, (k )+l /n(k)  z, which 
implies 

q,,(k)+~ qn(k) + 1 2Lk 
d(x, y) > n(k) z L ~ -  Lk > n(k) z 

It now suffices to use the Borel-Cantelli lemma and Lemma 4.4 to get the 
statement of Lemma4.5. | 

We can now prove Theorem 1.2 assuming Lemma 4.3. Fix x ~ Z, b > 1. 
Let [ y - x l  be large enough. Suppose (y, tl)sBbLk+~(X, t)\BbLk(X, t). We 
have two cases: 

1. bL~+ I <q,~k)+l/n(k)2-  2L~. 

2. bLk + i >~ qn(~) + 1/n(k) 2 - 2Lk. 

Suppose 0 belongs to the set of full measure U~=l(-]k>k,B~ and 
k > k o ( x ,  0). Then in the first case AbLk+~(X) is an (m, Lk)-regular region 
and applying, say, the proof of Theorem 3.3 in ref. 4, we get the desired 
decay of the two-point function. In the second case we have 

Lk + 2 >~ Lk + i q~k~ > n(k)2(bLk + l + 2L~) >~ q.(k~ + 

We have four subcases: 

1. Lk+l >q,(~)+l.  

2. L~+t<q . (k )+ t ,  qn(k)+l>q~(~). 
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3. Lk+ l<q , (k )+ l ,  q,(k)+l<q:(k),  L k = L ~ _ ~  (notice we must also 
have Lk+ 1 = L~). 

4. Lk+l  <qn(k)+l' q',(k)+l <qs(k), Lk=Lk- lqrn(k  1)" 

In each of these subcases we may apply Lemma4.3 to get that Lk is 
m-simple. Now suppose k > m a x ( k o ( x ,  0), k(x,  0)) [see Lemmas4.2 and 
4.5]. The same argument as before applies to prove exponential decay. | 

We required some conditions on p in Lemmas 4.2-4.5. These can be 
satisfied if 

p > m a x  { 7(3r+ l ) ' s ( 3 r +  l) s2 s - r '  Y 

Given e > 0, we may pick 

s > l ,  l < 7 < s ,  r < min 1,) 
in such a way that we can choose p <  1 +e. That means that for any 
0 < ~/< 1 we can find/~ such that Lemmas 4.2-4.5 hold with p = p/~/. Thus 
the only restriction on ~/ follows from the conditions on c~ in Lemma 4.3 
and it is r/< 1/3. 

5. P R O O F  OF L E M M A 4 . 3  

Given m, Lo, L1, L2, we define ~(m, L o, L1, L2) by (2.1). We take 
p>Ts .  

I . e m m a  5.1. Suppose Li is mi-simple. If either one of: 

(i) q,(i) + 1 < q~,(o and n(i) = n(i + 1) 

(ii) q,(o + 1 < qS(o, n(i) < n(i + 1), and q,(~+ 1)+ 1 < q~,(~+ 1) 

(iii) q , (o+l>q~(o,  qn(i+l)+l<q~(i+l) 

holds, then Li+ 1 is m i+ 1-simple with mi + 1 = rh(mi, Li,  Li,  L~+ 1). If: 

(iv) q,( i+l)+l>q~(i+l  ) 

then Ljo(.(~+l))_l is mjo(.(i+l))_1-simple and Ljo(,(~+l))is mjo(.(~+l))-simple 
with 

mjo(~(i+ 1))-1 = ff~(mi, L,,  Ljo(.(i + ,~))- 2, Ljo(.(,+ 1))--1 ) 

mjo(.(,+ ,))= rn(mjo(.(i+ 1)) 1, Li,  Ljo(.(i+ l)), L,o(.(i+ 1))) 
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We now proceed to finish the proof of Lemma 4.3 assuming 
Lemma 5.1. We take 

s ys ) 
p > m a x  s -- 2r' s - r7 

k e m m a  5.2. For any n the scale Lj~(~ is mjs with ms1= 

/~/(mjl_l, t j l -1 ,  ZJl-1, Ljl). 

Proof. We will prove the lemma by induction in n. Suppose Ls~(~ ~) 
is mj~r _ ~)-simple. 

1. If j~(n) = j0(n), q ,  > q~,_ 1 '  then taking i = jl(n - 1), we can apply 
Lemma 5.1, case (iv). 

2. If j l (n)>jo(n),  qn>q~ 1, then Ljl=Ljoq~_, <q,<L~lq~_l ,  and 
by (iv) of Lemma 5.1 the scale Ls0 is m~0-simple. For two points xl,  xz that 
are Ls0-resonant we have by Proposition 3.1 

4 4q,, w_ 1 4q~Z ~ 1 
d( T~O, Tx~O) <-<~Lp ~ Lp < qp <qp(1-~/~ 

On the other hand, d(TXlO, TX20)> 1/2qn for Ix 1 -x2]  < qn by (4.2). Since 
p > s / ( s - 2 r ) ,  we can conclude that Ix1-x2r ~>q,. 

Suppose there exist three (Lj~, mjo)-Singular points xl ,  x2, x3~ALj .  
Since Lj0 is mj0-simple, we can find Lj0-resonant points xl ,  x2, ~73, with 
~i~ALjo(x~), i =  1, 2, 3. Thus [ ~ - s  ~>q~, 1 ~i<j<<.3. But at least for one 
pair (i, j )  the distance [s - xil < Lj,/2 + Lso + 1 < Ls, < q,,. 

This contradiction proves that assumptions of the Theorem 2.3 are 
satisfied; thus, assuming that ALj~ is nonresonant, we apply Theorem 2.3 
to prove that it is (Lj~, mj,)-regular, which proves that the scale Ls~ is 
ms~-simple. 

3. If q , < q ~ - i  and Lj =Lj,_lq~,,(j~_l), then L~>q~ and 
Ljl 1 = Lsl(,_l); therefore it is mj~(, ~)-simple. 

For L~_ ~-resonant points xl ,  x2 we can now use 

4 4q~j~ l )  qnpO/7_r/s) d(T~O, T~20) < - -  < < 
L~t i LP 

- -  J l  

Since p > 7s/(s-rT),  we can now use the same argument as above. 

4. The last case is q~ < qS_ 1 and Ljl = L~ If n(jl - 1) = n(jl), we j [ - -  1" 

can apply cases (i)-(iii) of Lemma 5.1. If n ( j l -  1)< n(jl), then J l -  1 = 
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j l (n ( j l - -  1)+  1); thus Li~ 1 is mjl_l-simple. For  L j_ l - resonant  points 
X l ,  X 2 w e  get 

4 4 4 
d(T:qO' TX20) < LjI~- 1 LPff < a n 

1 
d(TXlO, TX20)>2q ~ if IXl-X21 <q~ 

It follows that since p > 72 we can use the same argument. That  completes 
the proof of Lemma 5.2. | 

Let us define m'(m, Lo, L 1 , L 2 ) = m - - r h ( m ,  Lo, L1,L2). It can be 
easily seen from the definition of the sequence of scales L~ and (2.1) that 
for any L1 < oo and m > 0 we can find Jo, mo such that for J <  Jo the scale 
L1 is mo-simple and 

m'(rni, Li, Li, Li+ I) 
i:i = j l ( n )  - -  1 fo r  s o m e  n 

s 
Or qnli) + 1 < qn(i) 

+ 2 (m'(mjl (n) 'Ljo(m+l)  3, L jo(m+l)-2 ,  Ljo(m+t) - 1 )  
n:qn+l >q~ 

+ rn'(mjo(m + 1) -- 1, Lj0(m + 1)- 3, Lj0(,, + 1)-1, Lj0(m + 1))) • m o  - -  m 

Lemma 4.3 now follows by induction from Lemmas 5.1 and 5.2. | 

Proof of  Lemma 5. I. 
noted. The cases (i) and 
argument. 

We will refer to n(i) as n unless otherwise 
(ii) are "almost diophantine" and so is the 

Proof of  (i). Suppose there exist three (Li, m/)-singular points 
x , ,  x2, x3eALi+l. Since Li is m~-simple, we can find L~-resonant points 
s x2, x3, with s i =  1, 2, 3. We conclude that 

d( T*iO, T*JO ) < 2L ~ - p, i, j =  1, 2, 3 (5.1) 

and for at least one pair (i, j )  the distance 12i-s < L i + l <  qn+ 1" Without 
loss of generality we assume that 121-x2l < qn+l; thus we get by (4.1), 
(4.2) that 

1 1 
d( T ~0, T ~20) > V----- > - -  

2q~ zq~+ l 
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If 121 - if2] > q.,  we have 

d( T~lO, T~20) > 
2IX 1 --X2[ s 

Thus 1 2 1 - 2 2 t s > 1  p gLi, which, since p > v s ,  is 
IX 1 --X2[ <Li+ 1, I f 0 <  121-~721 <q~,  we have 

in contradiction with 

1 
d( TXlO, T~'20) > - -  

2q. 

which, together with (5.1), is in contradiction with L~>q~.  If we now 
suppose that the box AL,+~(X) is nonresonant,  then we can apply 
Theorem 2.3e to get that it is mg+~-regular. Thus the scale Li+~ is 
m~+ 1-simple. 

Proo f  o f  (ii). Analogous arguments show that for any two 
Li-resonant points ~1 and if2 such that 1x~-22] <L~+~ we have (5.1). 
If 0 < [ s  we may use the same argument as above. If 
[2~ - x 2 [  > q,+ 1, we use that 

}92~-221 <L~+~ <q~(~+~)+l <qS(~+~)<L~+l~<L~ ~ 

Thus 

1 1 
d( T~'O, T~20) > > - -  

2q~(i+l)+ 1 2L~ '~ 

This is in contradiction with (5.1) and the proof  can be completed as 
above. 

In the cases (iii) and (iv) we cannot apply Theorem 2.3, so we will use 
the following: 

S u b l e m m a  5.3. Let q~(o+~ > q~(i)" Suppose there exists 
2 e AL,+~(y) such that AL,+I(y)\A2L,(s is (mio, Lt0)-regular for some i o ~< i. 
Suppose also that for some 6 < 6' < 1 - 6, 6 < K < 1 - 6 '  we have 

Z In h(x)  - JL,qr~i) > - L ,  +1 q,-(~7 (5.2) 
X E A L  a r6, 

t~n(i) x 

Fix r(1 - 6') < z < r(1 -- 6). Then there exists l =  l(m~, Li,  r, 6, 6', x, z) such 
that if Li > ~ we have 

GsL,+~(y,O~((y, 0), Y) <~ exp[- - M e x p ( 1 / 2 L i q ~ ) ]  

for all Ye  gHBLi+,((y, 0)) with M ~ > r n - e x p ( -  z-iq,(01/r-~,. 

822/73/1-2-22 
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Proof  o f  S u b l e m m a  5.3. We will follow the proof of the analogous 
statement in ref. 4. It follows from our construction that under the condi- 
tions of the lemma we have Zi+ 1 = Leqr(o and T(Li+ 1) = exp(Li+ lq~(,.'~). 

Take 

Y =  (z, e 1"~+ Iqn-(r~), Z e A L,+ I(Y) 

The case 

Y =  (z, --eLi+'q"-(;~) 

can be treated in the same way. We set 

Sj = B L,+ ,, 1/2 exp(Li+lqn-(;:)(Y' ( J -  1/2) eL'+'q.-(';), 

Denote 

by 71. Set 

j =  1, 2,..., [el~'+i(q.(,'r q.,])] 

A Liq~'O( ff ) 

1 r ( 1 - 6 ' - K )  / r(1-3' ~) 
Hs= 71x [ s -  ~e-qn(o , s + ~e-qn(i) -1 

For each s we introduce the event D. given by 

D. = {there are no bridges in H~ and for each x s 71 the line segment 

{ X }  X I ' S - -  1 _ q r ( , ~ - , '  K) 1 r ( 1 - , ' - ~ : )  5e ,, , s + 5e-qn(i) -1 has at least one cut } 

For  each configuration in D. there is no connection between 

t 1 __ r(l --6'--K) x 
71 x I s - -  ~e q..~ I and 

inside H,.  We have 

r(l-3'-~) 
Q ( D s ) = e x p [ - J 1 7 1  [ e qn(i) ] H 

x ~.d 

r6' __qr(~ ~'-~) . r ( 1  a ' -~ )_  ln2) + ~ In h(x)]  >~ exp [ --Liqn(i)(Je It + un(i) 
xs~ 

B A = A x [ - eL'+ lq~ ~, eL'*lq.,~ a] 

71X {S + " r(t ~'-~)~ ~e -qn(i) 

1 - -  r . .  r(1 --3'--K)~ 
expL - n i x )  e -q"li) ] } 

by (5.2). 
Let us denote 
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for any  A ~ Z. Let  A = A2r,(x) and let F s be the event that  there is no 
connect ion inside Sj\B~i f rom the exterior  b o u n d a r y  of B j  to BAL,.~\~i. 
Since Sj\B~ is entirely inside an (m~0, Lg0)-regular region we have tha~ 

Q(Ff)<~2exp[2Li+ - ~ ] e x p l - m i o L i o { L i q ~ i ) - 2 ( L i + 2 ) - l ) l  
1 qn(i) \ Lio + 1 

~< 2 exp [2L~q~f) ~ -- miL~(q]~i. ~ - 2)]  

~< exp [- - r~' cLiqn(i)] 

for some c =  c(r, z, 6', m~) and L~ sufficiently large, since z > r ( l -  6'). 
We now define 

Aj=FjnDu_l/2)~xp(L,+lq,7~)), j =  1 . . . . .  ~d Li*l(q;~6-q-r) ] 

Both F s and 

D(j_ I/2)exp(Li. 1 qn~r)) 

are local negative events; thus the H a r r i s - F K G  inequali ty implies 

Q(As) >~ Q(Fs) Q(D(j_ l/2)~xp(L~.~q~;~) 
rcP "~r r(l x) ~ r(l -~;) 

f -  ~iqn(i) ~ e (] -- ecLiq,,(,) ) 

Let 

A = Y Aj, j =  1,..., [eL'+l(q~;~-u~ )] 

All Aj are independent  identically dis t r ibuted events and  we get 

Q(A c) = l-I(1 - Q(Ay)) 
r 6  - -  = (1 -- Q(Aj)) expfLi+'(q'~i~-q'('~)] 

r(l -~)  t - r  ~< {1 - - e x p [ - - ~ t  ftr(l--K)-]~exp[Li(qn(i) --qn(i) )-1] 
~ i " l n ( i )  J J 

~< 3 exp{ - e x p [  _ ~ r  a t (  1 -- [ o r ( 1 - - 6 )  r . ~ r -  z-I  J ~ i " l n ( i )  K) _[_ ~i"In( i )  - -  ~iLln( i )  J } 

~< exp { -- exp [ 1/2q~]li~ - 6)Li] } 

since x > 6 a n d  ~ > r(1  - 6 ' )  > r6, for L~ sufficiently large. We have 

{0 *--'~L,,1(y,O) Y} c~ A = C 
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where C is the event that there exists a connection of vertical length 
>1 exp(Li + ~ q~7)) inside an (rag0, LO-regular region BALi+ ,(y)\A" Evidently 

Q(C) <~ [BALi+1(y)\AI 2 e x p ( -  m~0Li0 { [exp(L/+ 1 qff(/))] [ T(L~o)] - i  _ 1 }) 

~< [Le+ ~ exp(L~+ 1 q-(o exp[ -m~oL~o exp(L~q,( o - L~oq,(~o_ ~))] 

~< exp [ - M' ex ~- ~ P(Lgqn(o )] 

Thus 

with 

GsL,+,(y,O)((y,O), Y) ~< e x p [ - M  exp(1 / 2 Liq.(i)~-~ )] 

M>~m-exp(-1/4Leq~ ~) | ( )  

Now we start the proof of case (iii) of Lemma 5.1. For  any x~, x2 such 
that [x~-x21 <Li+l<q~(i+t)+l we get 

1 1 
d(T:~lO' TX20) > 2 " "~ 

q,(~+ 1)+ 1 2q~(i+ 1) 

On the other hand, if we suppose that Xl, x2 are Le-resonant, then (5.1) is 
satisfied and 

4 4q,,' 4q ~,'~s + 1 4 d(TX'O, T X 2 0 )  < - -  = l p  (i) ~ _ , ,  ~ 
,'7 P ">" ,~p(1 -- r/s)  

L P  ~ i + 1  "/n(i  + 1) ~ n ( i +  1) 

We get that since p(1 - r/s) > s, then if Li is large enough, Ix1 - X2[ > L~+ 1. 
Now we only need to prove (5.2) for nonresonant AL,+~(y) and some 
appropriate values of 6', x in order to be able to use Sublemma 5.3, which 
will allow us to complete the proof in the same way as before. Let us 
denote d(TXO, 0) by d(x). Our condition on the function f(O) implies that 
in h(x)> - (d (x ) )  -~ + c; thus, in order to apply Sublernma 5.3, we are to 
estimate 

d(x) -" 
X E ALiqrn~'i)(x) 

for some 6 < 6' < 1 -- 6. Suppose L~+ I(Y) is nonresonant; then d(x) >i L ; f (  ~ 
for x ~ ALi§ and (4.1), (4.2) give us the following estimate: 
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1/2Liqn(i)qn(i)+l Iz k \ - - t l  
~" I L - ~I~ + ) 

k = O  \ 2 q n ( i + l ) + l  X E A "  rt~' '~iqn(i)(y:) 

+4 E rT?( 
k = I 2q~(i) 

+ 4  ~ L,_?~' + =X1 + $ 2 +  
k = l  

We will estimate s Z 2, and Z 3 separately. 

1. We have 

Z 1 ~< 4L~+ 1 

r~' - l 
1/2Liqn(i)qn(i) + 1 / 1ET,U/tl ~ -- q 

I 
' v ~ i +  1 ~ ~ 1-t - - -  

k = O  2q~(i+ 1)J 

1/2Liqrn~;)qn-(il)+ l ( -4- k L,U/~ _ s ~ --q 

~<4L~+1 ~, 1 -  2 i+1 ] 
k = O  

rh' - 1 ] 
, u / r / - -  s - -  q ~<4L~+j 1 + fl/2L,q.~,~q.(~+~ ( 1 +  1/2Li+ 1 x) dx J 

{ 2 ltAnr~, l_,u/q_s,l_n l ]  t ~<4L~+ 1 l + r . / . _ S ( l _ t l ) [ ( l + l / - w . ( o ~ +  ~ , 
~ i +  1 t 

tt r~' -- ,u) + r6" 
<- 4Li + l q.(i) < 4Li + l q2(# I 

Here we used that Li+ ~ > q~(o+ ~ > q~(,)" 

2. In the analogous way we get 

b - t # / q  \ # 1/2Liqrn~'i;l 'x 'a ' i+ 1 ) --ri 
X2 ~<4Li+t y' 1 +  - -  

k = 1 2q.(i) + 1/I 
1/2Liqrn~;; 1 

lr f ,u/q - 1 "~ -,1 ~< 4L/~+ 1 ~ (1 q - , w - ~ i +  1 , 
k = l  

r6' - 1 
f ~ / 2 L  qno) d X  i - 

#/~ - 1 tt ~<4L7+1 ( I+(L~+~ /2)x)  

ar&'-- l lf [ l t / r l - -  1 ~ 
<~ L ~ / . - - ~ I - _ _ . )  1 + ~ u~(i) ~ + l  ] 1 

i + 1  k '1  

8 _ _ L # ( 1 - 1 / q ) + l r t ( r S ' - l ) ( 1 - r l ) l - # / ~  I~,7 - r ( 1  - -  r / )  
~< 1 - ~  i+1  ~ l n ( i )  ~ i + 1  " I n ( i )  
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. To  estimate 223 , we write 

1.~-- .  r3' 

k = l  

'~ 2 + r/.Tt/ 
"~ ~ln(i) rd' 1 -- 

l - - r l  (1/2Liqn(i))  " 

8 - -1- -qmr(6 '  1 ) ( 1 - -  
~ L i  + 1 "In(i) rl) + q 

8 _ _ I  ~- -q(s - :  l ) - -r (1- -6 ' ) ( l - -r l )  

Since 

In h(x )  - J L i q ~ i )  > Z 1 + ~2  + Z 3  - -  ( j _  c )  Liq;~i. ) 
X + ALiqrn~'i)(Sc ) 

we get that  if we take 

8 < 8 ' < m i n (  s ( 1 - # ) r  ' 1 ) - 8  

s(1 --/~) _ 8 , q ( s - 1  ) 
- -  ' - - + ( 1 - 8 ' ) ( 1 - n ) ,  8 < x < m i n  1 - 8 ' ,  r r 

(1 -r q---~) + (1 - q)(l - 8')) (5.3) 

then the condit ion (5.2) of Sublemma 5.3 will be satisfied. 
The value of x satisfying (5.3) can be found 8' < 1 - 8 implies 

1 - - 8 ' > 8 ,  r / ( s -  1 ) r - l - t -  (1 - 8')(1 - q) > 8 

Fur thermore ,  

1 -----~q + (1 - r/)(1 - 8') > ~, 8' < s(1 - - / ~ ) r - 1 -  3 
r 

implies s(1 - # ) r  -1 - 6' > 5. 
We can now use Sublemma 5.3 to prove the desired decay of the 

two-point  function and thus to conclude that  L;+I  is m;+ 1-simple, which 
finishes the proof  of s tatement (iii). 

Before we start the p roof  of the last s tatement  (iv) of the lemma, we 
will need the following: 
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Proposi t ion  5.4. For q~<k<q~+~/2 we have 

ProoL Let us represent k as k =  b~q,+ ... + blql + bo, where 

b j = I k - b ~ q  ~ . . . . .  ~ bj+ ~qj+ ~] for 

Evidently 0 ~< bj <~ kj + 1. We have 

d(T~O, 0) = d(r~0, 0) = 2 b#(T~,O, 0)(- 1)J 
J =o 

Here we used that sign(a)qs - pj) = -sign(e)qj+ 1 - Pj+ 1). Denote coqj- pj 
by aj. Recall that d(T~JO, O)-=lmqs-pjl=Aj. Since cb=ksqj_~+qj_2,  
P s = k j P j - l + P s - 2 ,  we have the same relations for the sequence as: 
aj = kjaj_ 1 + aj_ 2, which implies A} = l ajl = A j_ 2 -- kjAj_ 1. Thus 

1 

zJ j=dj-2 l - -  ~ kj-2l+2rdj 2l+2r--1 forany  l < j / 2  
r = l  

Let jo=min{j~>O: bs#O }. 

1. If ( i - j o ) / 2 6 N ,  then 

d( TXO, O) >t bjoAjo - 
( i  - -  j o ) / 2  

bjo+zrdjo+2r-l +bilail 
r = l  

(j - jo)/2 

>b,o~Jo- E k,o+2rA,o+2r-,+bi~, 
r = l  

>1 (b~o - 1 )Ajo + biAi >~ bidi 

Since b i - l q i - l +  "'" + b l q l  + b o < q i ,  we have 

2. If ( i - j o +  1) /2eN,  then in an analogous way we get 
( i  - - J o  - -  1 ) / 2  

d(r~O,O)>~bjo~Jo- Z kjo+2,a,o+2r_l-big, 
r = l  

/> (bjo-  1)Ajo + di -1  - b i d i  

>~ Ai-  l - b i A i  

> / ( k i + l - b i ) d i  
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Since k < q~+ if2 and b~ = [k/q~], we have 

b q~+~ 1(~q~+1 ~ ) 1 g < - - <  + 1  ~<~ (k~+l+ 1) 
2qi 2 \[_ qi _1 

Thus 

d(TkO, O)>~l(k~+l-1)A~>~(b~-l)A-i 2 ,>~([kl-1)A, | 

We now return to the proof of (iv) of Lemma 5.1. There will be no 
further interruptions. We will refer to n(i + 1) as n and jo(n + 1) as Jo. 

Since Ljo<q,,+t/2, applying Proposition 5.4, we get that for all 
x ~ ALjo(O)\Aq.(O), 

d(T~O, 0)>~ ( I ~ l - - t ) A ~  

From Ljo+ 1 = Ljoq r > qn+ 1/2, we have the following estimates: 
Ljo>qn+ff2q~, Ljo 2>q.+1/2q3nL Thus for large n and any 
Ljo_2 < Ix[ < Ljo the quantity 

/ ~  3 r + l  3 r + l  \ z q .  ~ ~> 8q~ 
(5.4) 

In the same way as before w e g e t  (5.1) for any L;-resonant points xl 
and x2. 

We now consider two cases. 

1. n(i+ 1)=n(i) .  Then we have 

1 1 1 
~ <~--- < ~ 3r +-----~ (5.5) 

i U n ( i )  ~qn(i+ 1) 

Suppose XI,X2EALj l+Lj ~ 2(Y)" Then (5.1), (5.4), and (5.5) imply that 
LXl-Xal<Ljo_:. T~aus f~r any y there exist 2sALjo_l(y ) such that 
ALj ~(y)\A(3/a)% 2(.~) is (mi, Li)-regular. We now need to prove the condi- 
tion-(5.2) for non-resonant box Acj _~(y) in order to apply Sublemma 5.3. 
In the same way as for the case (iii3, we get that for every x in a nonreso- 
nant box A%_~(y) we have d(x)>i Ljo~/~ and we want to estimate 

E d(x)-" 
x G A L ~n rb'. " j O - . . n ( t +  l l)  (2~) 

for some (5 < 6' < 1 - 6. 
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Using again (4.1), (4.2), we get 

2 d ( x ) - q  ~ Lj~o-I "~ 4 k~l~q q,(i + 1)+ 1 

4 r~' 
<L~  o- + (Ljo-2q.(~+ 1,) 1-'~q~(,+ 1)+1 1 (1 --r/)21-n 

(5.6) 

Since 

L ~3r =Ljo + ~qn( i+l)+l  
Jo-2qn(i+ 1) 1 2 

we can estimate the right-hand side of (5.6) as 

8 
L # -Ji- --l"ln(i+l) Jo--1 

If we now pick 6 < 3 ' < ( 1 - 3 t l - 6 ) / ( 1 - r l )  , which is possible since 
5 < ( 1 - 3 q ) / ( 1 - t l ) ,  and 6 < ~ c < l - 3 q - 3 ' ( 1 - r / ) ,  we will fulfill the 
condition (5.2) and thus prove that Lj0_ 1 is mj0_l-simple. The same 
argument works for L j0. 

2. Let us now turn to the case n( i+  1)>n(i ) :  I fL~+I=L~ ,  we have 

1 1 1 1 
L f  rp/~ <,p/-377--<~3--25773- ~i+ 1 ~ln(i+ 1) U~ln(i+ 1) 

since p > 7(3r + 1) and Li is large enough. We conclude in the same way as 
above that [xl -x21 < Ljo_2. 

If Li+ 1 = L~q~(o, we have L~+ 1 > q,(i+ 1), n ( i +  1) ~> n(i) + 1; thus 

1 rpqn]i ) .~rp/, 1 1 

Lf u . ( ~ +  1) qn(i+ 1) ~ln(i+ 1) 5qn(i+ 1) 

since 

(3r + 1)s 
p >  

s - - r  

Thus I x l - x 2 [  <Ljo 2. After this the rest of the proof is the same as in 
case 1. | 
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